首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Identifying the interacting positions of a protein using Boolean learning and support vector machines
Authors:Dubey Anshul  Realff Matthew J  Lee Jay H  Bommarius Andreas S
Institution:School of Chemical and Biomolecular Engineering, 311 Ferst Drive, Atlanta, GA 30332, United States.
Abstract:It is known that in the three-dimensional structure of a protein, certain amino acids can interact with each other in order to provide structural integrity or aid in its catalytic function. If these positions are mutated the loss of this interaction usually leads to a non-functional protein. Directed evolution experiments, which probe the sequence space of a protein through mutations in search for an improved variant, frequently result in such inactive sequences. In this work, we address the use of machine learning algorithms, Boolean learning and support vector machines (SVMs), to find such pairs of amino acid positions. The recombination method of imparting mutations was simulated to create in silico sequences that were used as training data for the algorithms. The two algorithms were combined together to develop an approach that weighs the structural risk as well as the empirical risk to solve the problem. This strategy was adapted to a multi-round framework of experiments where the data generated in the present round is used to design experiments for the next round to improve the generated library, as well as the estimation of the interacting positions. It is observed that this strategy can greatly improve the number of functional variants that are generated as well as the average number of mutations that can be made in the library.
Keywords:Interacting position  OCAT  Directed evolution  Support vector machines  Boolean function  Recombinations
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号