Abstract: | A novel Ru‐Fe‐B/ZrO2 catalyst for the selective hydrogenation of benzene to cyclohexene was prepared by the chemical reduction method. A yield of cyclohexene of 57.3% was achieved at benzene conversion of 80.6% on this catalyst. The activity and yield of cyclohexene were higher than those studied previously. The structural characterizations of the catalyst were performed by TEM‐SAED, XRD, and N2‐physisorption. Moreover, cyclohexene selectivities on this catalyst increased and the activities decreased with the increase of the ZnO dosages, however, the activities increased and cyclohexene selectivities decreased with the increase of the H2SO4 dosages. Different feeding manners of H2SO4 or ZnO exerted definitely influence on the performances of this catalyst, but the degrees of influence were different due to the character of chemisorptions. Furthermore, the activity and cyclohexene selectivity on the catalysts could be reversibly modified by adding H2SO4 or ZnO into reaction slurry, which provides an easy method to recover the activity and selectivity of Ru‐Fe‐B/ZrO2 catalysts during the process of producing cyclohexene. And the modifiable mechanisms involved were speculated. |