首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Ni2(OCH3)2/SiO2催化剂上CO2和CH3 OH的吸附和反应性能
引用本文:钟顺和,王爱菊,黎汉生,肖秀芬.Ni2(OCH3)2/SiO2催化剂上CO2和CH3 OH的吸附和反应性能[J].化学物理学报(中文版),2003,16(2):156-160.
作者姓名:钟顺和  王爱菊  黎汉生  肖秀芬
作者单位:天津大学化工学院,C1化学与化工国家重点实验室,天津 300072 
摘    要:采用表面改性和离子交换相结合的方法制备了Ni2(OCH3)2/SiO2负载型双核金属甲氧基配合物催化剂,利用红外光谱(IR)、程序升温脱附(TPD)、程序升温表面反应(TPSR)和微反技术考察了催化剂的表面结构以及CO2和CH3OH的化学吸附和反应性能.结果表明:Ni2(OCH3)2/SiO2中Ni2+与载体SiO2表面O2-以双齿配位形式键合,甲氧基以桥基形式联结双金属离子形成双核物种Ni2(OCH3)2;CO2在催化剂表面存在甲氧碳酸酯基物种和桥式两种吸附态,CH3OH则只有一种分子吸附态;在100~200℃条件下,CO2和CH3OH在催化剂上的反应产物主要是DMC和H2O;根据反应结果,讨论了催化反应机理.

关 键 词:二氧化碳  甲醇  碳酸二甲酯  负载型镍甲氧基配合物  SiO2载体

Adsorption and Reaction of CO2 and CH3 OH on Ni2 ( OCH3 )2/SiO2 Catalyst
Zhong Shunhe,Wang Aiju,Li Hansheng,Xiao Xiufen.Adsorption and Reaction of CO2 and CH3 OH on Ni2 ( OCH3 )2/SiO2 Catalyst[J].化学物理学报(中文版),2003,16(2):156-160.
Authors:Zhong Shunhe  Wang Aiju  Li Hansheng  Xiao Xiufen
Institution:{{each article.affiliations aff i}} {{if aff.addressEn && aff.addressEn != ""}} {{if aff.label && aff.label != "" && article.affiliations.length != 1}}{{@ aff.label}}.{{/if}}{{@ aff.addressEn}}{{/if}} {{/each}}
Abstract:The supported dinuclear nickel methoxide complex Ni2(OCH3)2/SiO2was prepared by surface reaction modification and ion-exchange method. Its chemical composition and surface structure were characterized by element analysis and infrared spectroscopy (IR) techniques. The results showed that, in Ni2(OCH3)2/SiO2, Ni2+ bonds with surface O2-of SiO2 supported in bidentate fashion andbis-μ-OCH3bridged structure Ni2 (OCH3)2 was formed between the two metal ions. The chemisorption properties of CO2 and CH3OH on the catalyst were studied by chemisorption infrared spectroscopy and chemisorption temperature programmed desorption (TPD) techniques. The experimental results showed that CO2chemisorbs on the catalyst as two states: bridged absorption state and methyl carbonate species. At room temperature, the bridged absorption state is formed between Ni2+ and OCH3 ligand , in which metal ions adsorb with the O atom and OCH3 ligand adsorbs with the carbon atom in CO2. At higher temperature, it transforms to the methyl carbonate species, the amount of which can be increased by formation of the bridged OCH3. Whilst CH3OH only forms molecular adsorption states with O atom in CH3OH adsorbing on Ni2+ and desorbs molecularly during 110~140℃, the synergic relationship between Ni2+ and OCH3ligand determines the activation process and the adsorption state of CO2 and CH3OH. The catalytic reactivity for Ni2(OCH3)2/SiO2 was characterized by temperature programmed surface reaction mass spectroscopy(TPSR-MS) and micro-reactor evaluation techniques. The results revealed that CO2and CH3OH could react on Ni2(OCH3)2/SiO2 with good reactivity and high DMC selectivity. At 100~200℃, reaction products were mainly DMC and H2O and the reactivity was determined by surface methoxyl carbonate species and CH3OH in molecular adsorption states. Based on the results above, the activation processes of CO2 and CH3OH and the mechanism for DMC synthesis were analyzed theoretically. The formation and amount of methyl carbonate species of CO2 on Ni2(OCH3)2/SiO2 control the procedure of the reaction. The methoxylation of intermediate surface hydroxide is necessary to the catalytic circle.
Keywords:Carbon dioxide  Methanol  Dimethyl carbonate  Supported nickel methoxide complex  SiO2 support          
本文献已被 万方数据 等数据库收录!
点击此处可从《化学物理学报(中文版)》浏览原始摘要信息
点击此处可从《化学物理学报(中文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号