首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stability of a self-gravitating homogeneous resistive plasma
Authors:Daniela Pugliese  Nakia CarlevaroMassimiliano Lattanzi  Giovanni Montani  Riccardo Benini
Institution:
  • a Dipartimento di Fisica, “Sapienza” Università di Roma, P.le Aldo Moro 5, 00185 Roma, Italy
  • b School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
  • c Oxford Astrophysics, Denys Wilkinson Building, Keble Road OX1 3RH, Oxford, UK
  • d ENEA-C.R. Frascati (Rome), UTFUS-MAG, Italy
  • e INFN-Sez. Roma1, Italy
  • Abstract:In this paper, we analyze the stability of a homogeneous self-gravitating plasma, having a non-zero resistivity. This study provides a generalization of the Jeans paradigm for determining the critical scale above which gravitational collapse is allowed.We start by discussing the stability of an ideal self-gravitating plasma embedded in a constant magnetic field. We outline the existence of an anisotropic feature of the gravitational collapse. In fact, while in the plane orthogonal to the magnetic field the Jeans length is enhanced by the contribution of the magnetic pressure, outside this plane perturbations are governed by the usual Jeans criterion. The anisotropic collapse of a density contrast is sketched in detail, suggesting that the linear evolution provides anisotropic initial conditions for the non-linear stage, where this effect could be strongly enforced.The same problem is then faced in the presence of non-zero resistivity and the conditions for the gravitational collapse are correspondingly extended. The relevant feature emerging in this resistive scenario is the cancelation of the collapse anisotropy in weakly conducting plasmas. In this case, the instability of a self-gravitating resistive plasma is characterized by the standard isotropic Jeans length in any directions. The limit of very small resistivity coefficient is finally addressed, elucidating how reminiscence of the collapse anisotropy can be found in the different values of the perturbation frequency inside and outside the plane orthogonal to the magnetic field.
    Keywords:Plasma Physics  Magnetohydrodynamics  Jeans instability
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号