首页 | 本学科首页   官方微博 | 高级检索  
     


FAIMS operation for realistic gas flow profile and asymmetric waveforms including electronic noise and ripple
Authors:Alexandre A. Shvartsburg  Keqi Tang  Richard D. Smith
Affiliation:Biological Sciences Division, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
Abstract:The use of field asymmetric waveform ion mobility spectrometry (FAIMS) has rapidly grown with the advent of commercial FAIMS systems coupled to mass spectrometry. However, many fundamental aspects of FAIMS remain obscure, hindering its technological improvement and expansion of analytical utility. Recently, we developed a comprehensive numerical simulation approach to FAIMS that can handle any device geometry and operating conditions. The formalism was originally set up in one dimension for a uniform gas flow and limited to ideal asymmetric voltage waveforms. Here we extend the model to account for a realistic gas flow velocity distribution in the analytical gap, axial ion diffusion, and waveform imperfections (e.g., noise and ripple). The nonuniformity of the gas flow velocity profile has only a minor effect, slightly improving resolution. Waveform perturbations are significant even at very low levels, in some cases approximately 0.01% of the nominal voltage. These perturbations always improve resolution and decrease sensitivity, a trade-off controllable by variation of noise or ripple amplitude. This trade-off is physically inferior to that obtained by adjusting the gap width and/or asymmetric waveform frequency. However, the disadvantage is negligible when the perturbation period is much shorter than the residence time in FAIMS, and ripple adjustment appears to offer a practical method for modifying FAIMS resolution.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号