首页 | 本学科首页   官方微博 | 高级检索  
     

基于AGPF的滚动轴承性能衰退趋势预测
引用本文:史晓雪,吴亚锋. 基于AGPF的滚动轴承性能衰退趋势预测[J]. 应用声学, 2017, 25(10): 228-231
作者姓名:史晓雪  吴亚锋
作者单位:西北工业大学
摘    要:针对粒子滤波算法中粒子退化和计算复杂度问题,提出了一种自适应遗传粒子滤波(AGPF)算法。该算法采用遗传算法代替传统粒子滤波中的重采样方法,并根据粒子数与滤波误差方差之间的关系,自适应调节滤波过程中的粒子数。通过预测滚动轴承的性能衰退趋势,对该方法进行验证,结果表明,AGPF算法能够在保证预测精度的条件下,减少滤波粒子数,更加适用于滚动轴承的性能衰退趋势预测。

关 键 词:滚动轴承  自回归模型  粒子滤波  衰退趋势预测
收稿时间:2017-07-14
修稿时间:2017-08-14

Prediction of Declining Performance of Rolling Bearing Based on AGPF
Shi Xiaoxue and Wu Yafeng. Prediction of Declining Performance of Rolling Bearing Based on AGPF[J]. Applied Acoustics(China), 2017, 25(10): 228-231
Authors:Shi Xiaoxue and Wu Yafeng
Abstract:Aiming at the problem of particle degradation and computational complexity in particle filter algorithm, an adaptive genetic particle filter (AGPF) algorithm is proposed. The algorithm uses the genetic algorithm instead of the resampling method in the traditional particle filter, and adaptively adjusts the number of particles in the filtering process according to the relationship between the number of particles and the variance of the filter error. The results show that the AGPF algorithm can reduce the number of filtered particles under the condition of ensuring the prediction accuracy, and is more suitable for the prediction of the performance of the rolling bearings.
Keywords:rolling bearings   autoregressive model   particle filter   forecast of recession trend
点击此处可从《应用声学》浏览原始摘要信息
点击此处可从《应用声学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号