首页 | 本学科首页   官方微博 | 高级检索  
     

基于非分散红外(NDIR)技术的土壤剖面二氧化碳浓度的测定
引用本文:涂志华,赵阳,郑力文,贾国栋,陈丽华,余新晓. 基于非分散红外(NDIR)技术的土壤剖面二氧化碳浓度的测定[J]. 光谱学与光谱分析, 2015, 35(4): 997-1000. DOI: 10.3964/j.issn.1000-0593(2015)04-0997-04
作者姓名:涂志华  赵阳  郑力文  贾国栋  陈丽华  余新晓
作者单位:1. 北京林业大学水土保持学院,水土保持与荒漠化防治教育部重点实验室,北京 100083
2. 中国水利水电科学研究院,流域水循环模拟与调控国家重点实验室,北京 100048
基金项目:国家自然科学基金项目(41171028);国家“十二五”科技支撑计划项目
摘    要:为了探索土壤剖面CO2浓度以及不同土壤层(腐殖质H层、A层、B层、C层)土壤呼吸的变化规律,应用非分散红外(NDIR)技术的新方法,持续不间断的测量土壤剖面二氧化碳浓度。实验所用的主要仪器为硅基非分散红外测量仪,能在高湿、高粉尘、污垢及其他恶劣环境中进行光谱数据采集。通过2013年全年光谱测定值的采集,并应用梯度法模型计算不同深度土壤碳通量,同时利用LI-8100碳通量自动监测系统持续监测的土壤碳通量值进行回归分析。结果显示:土壤剖面CO2浓度呈现明显的梯度变化,即随着土壤深度的增加,土壤CO2浓度增大;梯度法模型得出的不同土壤层的土壤呼吸模拟值与实测土壤呼吸值之间具有较好的线性相关,H,A,B,C层的模型预测的决定系数(R2)分别为0.906 9,0.718 5,0.838 2,0.903 0,均方根误差(RMSE)分别为0.206 7,0.104 1,0.015 6,0.009 6。均达到了较好的预测结果,表明该方法对定量分析不同土壤层碳通量是可行的。该方法具有清晰揭示土壤CO2在不同土壤层之间的传输规律,以及有助于分析不同土壤层土壤呼吸特性的优点,能为全球土壤剖面碳通量计算提供基础数据,是一种具有发展前途的传感器。

关 键 词:非分散红外(NDIR)技术  土壤剖面  二氧化碳  碳通量   
收稿时间:2014-03-12

Detection of Carbon Dioxide Concentration in Soil Profile Based on Nondispersive Infrared Spectroscopy Technique
TU Zhi-hua,ZHAO Yang,ZHENG Li-wen,JIA Guo-dong,CHEN Li-hua,YU Xin-xiao. Detection of Carbon Dioxide Concentration in Soil Profile Based on Nondispersive Infrared Spectroscopy Technique[J]. Spectroscopy and Spectral Analysis, 2015, 35(4): 997-1000. DOI: 10.3964/j.issn.1000-0593(2015)04-0997-04
Authors:TU Zhi-hua  ZHAO Yang  ZHENG Li-wen  JIA Guo-dong  CHEN Li-hua  YU Xin-xiao
Affiliation:1. Key Laboratory of Soil and Water Conservation and Combating Desertification, Ministry of Education, College of Water and Soil Conservation, Beijing Forestry University, Beijing 100083, China 2. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
Abstract:In order to explore the variation of CO2 concentration and soil respiration in soil profile, the nondispersive infrared (NDIR) spectroscopy technique was applied to continually estimate the soil CO2 concentration in different soil layers (the humus horizon, A-, B-, C-horizon) in situ. The main instrument used in this experiment was silicon-based nondispersive infrared sensor, which could work in severe environment. We collected the measurement value by NDIR spectroscopy technique throughout 2013. The values of soil carbon flux in different soil layers were calculated based on the model of gradient method and calibrated by measuring with an automated soil CO2 efflux system (LI-8100). The results showed that: a vertical gradient for the carbon dioxide concentration in soil profile was found, and the concentration was highest in the deepest soil horizon. Moreover, A linear correlation between the soil CO2 effluxes was calculated based on model and measurement, and the model prediction correlation coefficient was 0.906 9, 0.718 5, 0.838 2, and 0.903 0 in the H-, A-, B-, and C-horizon, respectively. The roots of mean square error (RMSE) were 0.206 7, 0.104 1, 0.015 6, and 0.009 6 in the H-, A-, B-, and C-horizon, respectively. These results suggest that the gradient method based on the NDIR spectroscopy technique can be successfully used to measure soil CO2 efflux in different soil layers, which reveal that diffusion and convection transport CO2 between the soil layers. It is a promising sensor for detecting CO2 concentration in soil profile, providing the basic data for calculating the global carbon in soil profile.
Keywords:Nondispersive infrared spectroscopy technique  Soil profile  Carbon dioxide  Carbon flux
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号