首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electron spin relaxation time measurements using radiofrequency longitudinally detected ESR and application in oximetry
Authors:Panagiotelis I  Nicholson I  Hutchison J M
Institution:Department of Biomedical Physics and Bio-Engineering, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom.
Abstract:Longitudinally detected ESR (LODESR) involves transverse ESR irradiation with a modulated source and observing oscillations in the spin magnetization parallel to the main magnetic field. In this study, radiofrequency-LODESR was used for oximetry by measuring the relaxation times of the electron. T1e and T2e were measured by investigating LODESR signal magnitude as a function of detection frequency. We have also predicted theoretically and verified experimentally the LODESR signal phase dependence on detection frequency and relaxation times. These methods are valid even for inhomogeneous lines provided that T1e>T2e. We have also developed a new method for measuring T1e, valid for inhomogeneous spectra, for all values of T1e and T2e, based on measuring the spectral area as a function of detection frequency. We have measured T1e and T2e for lithium phthalocyanine crystals, for the nitroxide TEMPOL, and for the single line agent Triarylmethyl (TAM). Furthermore, we have collected spectra from aqueous solutions of TEMPOL and TAM at different oxygen concentrations and confirmed that T1e values are reduced with increased oxygen concentration. We have also measured the spin-lattice electronic relaxation time for degassed aqueous solutions of the same agents at different agent concentrations. T1e decreases as a function of concentration for TAM while it remains independent of free radical concentration for TEMPOL, a major advantage for oxygen mapping. This method, combined with the ability of LODESR to provide images of exogenous free radicals in vivo, presents an attractive alternative to the conventional transverse ESR linewidth based oximetry methods.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号