首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Impact of isomeric structures on transistor performances in naphthodithiophene semiconducting polymers
Authors:Osaka Itaru  Abe Toru  Shinamura Shoji  Takimiya Kazuo
Institution:Department of Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan. iosaka@hiroshima-u.ac.jp
Abstract:Four isomeric naphthodithiophenes (NDTs) with linear and angular shapes were introduced into the polythiophene semiconductor backbones, and their field-effect transistor performances were characterized. The polymers bearing naphtho1,2-b:5,6-b']dithiophene (NDT3), an angular-shaped NDT, exhibited the highest mobilities of ~0.8 cm(2) V(-1) s(-1) among the four NDT-based polymers, which is among the highest reported so far for semiconducting polymers. Interestingly, the trend of the mobility in the NDT-based polymers was contrary to our expectations; the polymers with angular NDTs showed higher mobilities than those with linear NDTs despite the fact that naphtho2,3-b:6,7-b']dithiophene (NDT1), a linear-shaped NDT, has shown the highest mobility in small-molecule systems. X-ray diffraction studies revealed that angular-NDT-based polymers gave the highly ordered structures with a very close π-stacking distance of 3.6 ?, whereas linear-NDT-based polymers had a very weak or no π-stacking order, which is quite consistent with the trend of the mobility. The nature of such ordering structures can be well understood by considering their molecular shapes. In fact, a linear NDT (NDT1) provides angular backbones and an angular NDT (NDT3) provides a pseudostraight backbone, the latter of which can pack into the highly ordered structure and thus facilitate the charge carrier transport. In addition to the ordering structure, the electronic structures seem to correlate with the carrier transport property. MO calculations, supported by the measurement of ionization potentials, suggested that, while the HOMOs are relatively localized within the NDT cores in the linear-NDT-based polymers, those are apparently delocalized along the backbone in the angular-NDT-based polymers. The latter should promote the efficient HOMO overlaps between the polymer backbones that are the main paths of the charge carrier transport, which also agrees with the trend of the mobility. With these results, we conclude that angular NDTs, in particular NDT3, are promising cores for high-performance semiconducting polymers. We thus propose that both the molecular shapes and the electronic structures are important factors to be considered when designing high performance semiconducting polymers.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号