首页 | 本学科首页   官方微博 | 高级检索  
     


Pareto-Optimal Clustering with the Primal Deterministic Information Bottleneck
Authors:Andrew K. Tan  Max Tegmark  Isaac L. Chuang
Affiliation:1.Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (M.T.); (I.L.C.);2.The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, Cambridge, MA 02139, USA;3.Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Abstract:At the heart of both lossy compression and clustering is a trade-off between the fidelity and size of the learned representation. Our goal is to map out and study the Pareto frontier that quantifies this trade-off. We focus on the optimization of the Deterministic Information Bottleneck (DIB) objective over the space of hard clusterings. To this end, we introduce the primal DIB problem, which we show results in a much richer frontier than its previously studied Lagrangian relaxation when optimized over discrete search spaces. We present an algorithm for mapping out the Pareto frontier of the primal DIB trade-off that is also applicable to other two-objective clustering problems. We study general properties of the Pareto frontier, and we give both analytic and numerical evidence for logarithmic sparsity of the frontier in general. We provide evidence that our algorithm has polynomial scaling despite the super-exponential search space, and additionally, we propose a modification to the algorithm that can be used where sampling noise is expected to be significant. Finally, we use our algorithm to map the DIB frontier of three different tasks: compressing the English alphabet, extracting informative color classes from natural images, and compressing a group theory-inspired dataset, revealing interesting features of frontier, and demonstrating how the structure of the frontier can be used for model selection with a focus on points previously hidden by the cloak of the convex hull.
Keywords:multi-objective   optimization   Pareto   frontier   information   bottleneck   clustering
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号