首页 | 本学科首页   官方微博 | 高级检索  
     


A Superior Na3V2(PO4)3‐Based Nanocomposite Enhanced by Both N‐Doped Coating Carbon and Graphene as the Cathode for Sodium‐Ion Batteries
Authors:Jin‐Zhi Guo  Dr. Xing‐Long Wu  Fang Wan  Jie Wang  Xiao‐Hua Zhang  Prof. Rong‐Shun Wang
Affiliation:National and Local United Engineering Laboratory for Power Batteries and Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (P. R. China)
Abstract:A superior Na3V2(PO4)3‐based nanocomposite (NVP/C/rGO) has been successfully developed by a facile carbothermal reduction method using one most‐common chelator, disodium ethylenediamintetraacetate [Na2(C10H16N2O8)], as both sodium and nitrogen‐doped carbon sources for the first time. 2D‐reduced graphene oxide (rGO) nanosheets are also employed as highly conductive additives to facilitate the electrical conductivity and limit the growth of NVP nanoparticles. When used as the cathode material for sodium‐ion batteries, the NVP/C/rGO nanocomposite exhibits the highest discharge capacity, the best high‐rate capabilities and prolonged cycling life compared to the pristine NVP and single‐carbon‐modified NVP/C. Specifically, the 0.1 C discharge capacity delivered by the NVP/C/rGO is 116.8 mAh g?1, which is obviously higher than 106 and 112.3 mAh g?1 for the NVP/C and pristine NVP respectively; it can still deliver a specific capacity of about 80 mAh g?1 even at a high rate up to 30 C; and its capacity decay is as low as 0.0355 % per cycle when cycled at 0.2 C. Furthermore, the electrochemical impedance spectroscopy was also implemented to compare the electrode kinetics of all three NVP‐based cathodes including the apparent Na diffusion coefficients and charge‐transfer resistances.
Keywords:carbon modification  cathode  graphene  sodium‐ion batteries  sodium vanadium phosphate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号