首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Design of high-performance core-shell hollow carbon nanofiber@nickel-cobalt double hydroxide composites for supercapacitive energy storage
Authors:Juan Xu  Yan Wang  Chao Yang  Jianyu Cao  Zhidong Chen  Chaoying Ni
Institution:1.School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center,Changzhou University,Changzhou,China;2.Department of Materials Science and Engineering,University of Delaware,Newark,USA
Abstract:The supercapacitive performances of supercapacitor mainly depend on the physical nanostructure and micro-morphology of electrode materials. Here, we demonstrated the design, synthesis and electrochemical performances of core-shell hollow carbon nanofiber@nickel-cobalt-layered double hydroxide (HCNF@ Ni0.67Co0.33-LDH) nanocomposites with an optimized Ni/Co molar ratio of 2:1. The HCNF was used as superiorly conductive core to sustain the nanoporous silky Ni0.67Co0.33-LDH shell, which can efficiently provide fast transport pathways for electrons and electrolyte ions. The outstanding specific capacitance of 2486 F g?1 at 1 A g?1 based on galvanostatic charge-discharge curves were acquired for the highly electroactive HCNF@Ni0.67Co0.33-LDH. Furthermore, the HCNF@Ni0.67Co0.33-LDH electrode delivered a distinguished rate capability with a specific capacitance of 1890 F g?1 even at 15 A g?1. Notably, an asymmetric supercapacitor with HCNF@Ni0.67Co0.33-LDH as cathode and HCNF as anode was devised, which presented a prominent specific capacitance of 228 F g?1, good energy density of 62.1 Wh kg?1, and impressive cycling stability (90.6% capacitance retention after 10,000 cycles).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号