首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stamping patterns of insulated gold nanowires with self-organized ultrathin polymer films
Authors:Helt James M  Drain Charles Michael  Bazzan Giorgio
Institution:Department of Chemistry, College of Staten Island and the Graduate Center of the City University of New York, 2800 Victory Boulevard, Staten Island, New York 10314, USA. cdrain@hunter.cuny.edu
Abstract:A thermal contact transfer technique is presented for the fabrication of nanoscaled to microscaled patterns of polymer-insulated metal structures on ceramic surfaces using metal-coated, thermoplastic stamps. The thermally activated formation of polymer-metal-polymer (PMP) heterostructures occurs spontaneously when a metal-coated thermoplastic stamp is compressed against a ceramic substrate and subsequently heated. The presented technique exploits the dynamics of ultrathin polymer films localized at interfaces and interfacial forces to prompt local reorganization of polymer stamp materials during processing. Intercalation of polymer stamp materials into the metal-substrate interface yields a cohesive polymer layer that binds the metal layer to the substrate. Disproportionate adhesion between the bulk polymer and the polymer layer at the stamp-metal interface leaves a capping layer upon separation of the stamp from the substrate. Here we demonstrate this technique with single use, bilevel polymer stamps which afford transfer of two distinct general products. The transfer of insulated submicrometer wide wires from the raised stamp features affords patterns of trilayered PMP structures with uniform wire dimensions. Concomitant transfer from the recessed stamp features allows fabrication of multilayered PMP architectures with sub-100 nm spacing from microstructured polymer stamps. Thus, patterns with two different insulated nanowire widths are readily fabricated in a single stamping process. A variety of ceramic substrates, thermoplastic materials, and metals can be used; e.g., inexpensive gold-coated CD or DVD media can be used as stamps, where the combination of materials dictates the relative interfacial forces and the processing parameters.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号