首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Energy conservation and super convergence analysis of the EC‐S‐FDTD schemes for Maxwell equations with periodic boundaries
Authors:Liping Gao  Minmin Cao  Rengang Shi  Hui Guo
Abstract:This paper is concerned with new energy analysis of the two dimensional Maxwell's equations and the symmetric energy‐conserved splitting finite difference time domain (EC‐S‐FDTD) method with the periodic boundary (PB) condition. New energy identities of the Maxwell's equations in terms of H1 and H2 norms are proposed and interpreted by considering the physical meanings of the H1 and H2 semi‐norms in the identities. It is found from these new identities that the first and second curls of the electromagnetic fields are conserved in terms their magnitudes. By the energy methods, the numerical energy identities of the symmetric EC‐S‐FDTD method are derived and shown to converge to the continuous energy identities of the Maxwell's equations. This proves that the symmetric EC‐S‐FDTD scheme is unconditionally stable and energy conserved in the discrete H1 and H2 norms. Also by the energy methods, it is proved that the symmetric EC‐S‐FDTD method with PB condition is of second order (super) convergence in the discrete H1 and H2 norms. Numerical experiments are carried out and confirm the analysis on energy conservation, stability and super convergence.
Keywords:energy conservation  FDTD  Maxwell equation  splitting  stability  super convergence
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号