首页 | 本学科首页   官方微博 | 高级检索  
     检索      


New approach to the Lax‐Wendroff modified differential equation for linear and nonlinear advection
Authors:Ireneusz Winnicki  Janusz Jasinski  Slawomir Pietrek
Abstract:The paper presents an enhanced analysis of the Lax‐Wendroff difference scheme—up to the eighth‐order with respect to time and space derivatives—of the modified‐partial differential equation (MDE) of the constant‐wind‐speed advection equation. The modified equation has been so far derived mainly as a fourth‐order equation. The Π ‐form of the first differential approximation (differential approximation or equivalent equation) derived by expressing the time derivatives in terms of the space derivatives is used for presenting the MDE. The obtained coefficients at higher order derivatives are analyzed for indications of the character of the dissipative and dispersive errors. The authors included a part of the stencil applied for determining the modified differential equation up to the eighth‐order of the analyzed modified differential equation for the second‐order Lax‐Wendroff scheme. Neither the derived coefficients at the space derivatives of order p ∈ (7 – 8) in the modified differential equation for the Lax‐Wendroff difference scheme nor the results of analyses on the basis of these coefficients of the group velocity, phase shift errors, or dispersive and dissipative features of the scheme have been published. The MDEs for 2 two‐step variants of the Lax‐Wendroff type difference schemes and the MacCormack predictor–corrector scheme (see MacCormack's study) constructed for the scalar hyperbolic conservation laws are also presented in this paper. The analysis of the inviscid Burgers equation solution with the initial condition in a form of a shock wave has been discussed on their basis. The inviscid Burgers equation with the source is also presented. The theory of MDE started to develop after the paper of C. W. Hirt was published in 1968.
Keywords:Π  ‐form of the first differential approximation  difference scheme dispersive and dissipative features  group velocity  higher order modified differential equation  phase shift errors  Lax‐Wendroff method
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号