首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reactive TiO2 Nanoparticles Compatibilized PLLA/PBSU Blends:Fully Biodegradable Polymer Composites with Improved Physical,Antibacterial and Degradable Properties
Authors:Xiao-Ying Gu  Ling-Min Hu  Zhi-Ang Fu  Heng-Ti Wang  Yong-Jin Li
Abstract:The fully biodegradable polymer blends remain challenges for the application due to their undesirable comprehensive performance.Herein,remarkable combination of superior mechanical performance,bacterial resistance,and controllable degradability is realized in the biodegradable poly(L-lactide)/poly(butylene succinate) (PLLA/PBSU) blends by stabilizing the epoxide group modified titanium dioxide nanoparticles (m-TiO2) at the PLLA-PBSU interface through reactive blending.The m-TiO2 can not only act as interfacial compatibilizer but also play the role of photodegradation catalyst:on the one hand,binary grafted nanoparticles were in situ formed and stabilized at the interface to enhance the compatibility between polymer phases.As a consequence,the mechanical properties of the blend,such as the elongation at break,notched impact strength and tensile yield strength,were simultaneously improved.On the other hand,antibacterial and photocatalytic degradation performance of the composite films was synergistically improved,it was found that the m-TiO2 incorporated PLLA/PBSU films exhibit more effective antibacterial activity than the neat PLLA/PBSU films.Moreover,the analysis of photodegradable properties revealed that that m-TiO2 nanoparticles could act as a photocatalyst to accelerate the photodegradation rate of polymers.This study paves a new strategy to fabricate advanced PLLA/PBSU blend materials with excellent mechanical performance,antibacterial and photocatalytic degradation performance,which enables the potential utilization of fully degradable polymers.
Keywords:Reactive TiO2 nanoparticles  PLLA/PBSU blend composites  Compatibilization  Photodegradation
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号