首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Exact augmented Lagrangian duality for mixed integer linear programming
Authors:Mohammad Javad Feizollahi  Shabbir Ahmed  Andy Sun
Institution:1.Robinson College of Business,Georgia State University,Atlanta,USA;2.School of Industrial and Systems Engineering,Georgia Institute of Technology,Atlanta,USA
Abstract:We investigate the augmented Lagrangian dual (ALD) for mixed integer linear programming (MIP) problems. ALD modifies the classical Lagrangian dual by appending a nonlinear penalty function on the violation of the dualized constraints in order to reduce the duality gap. We first provide a primal characterization for ALD for MIPs and prove that ALD is able to asymptotically achieve zero duality gap when the weight on the penalty function is allowed to go to infinity. This provides an alternative characterization and proof of a recent result in Boland and Eberhard (Math Program 150(2):491–509, 2015, Proposition 3). We further show that, under some mild conditions, ALD using any norm as the augmenting function is able to close the duality gap of an MIP with a finite penalty coefficient. This generalizes the result in Boland and Eberhard (2015, Corollary 1) from pure integer programming problems with bounded feasible region to general MIPs. We also present an example where ALD with a quadratic augmenting function is not able to close the duality gap for any finite penalty coefficient.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号