Three-dimensionally ordered porous membranes prepared via self-assembly and reverse micelle formation from well-defined amphiphilic block copolymers |
| |
Authors: | Fu G D Kang E T Neoh K G |
| |
Affiliation: | Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 119260. |
| |
Abstract: | Block copolymers of poly(pentafluorostyrene) (PFS) and poly(tert-butyl acrylate) (PtBA), or PFS-b-PtBA copolymers, were synthesized via consecutive atom transfer radical polymerizations (ATRPs). Amphiphilic block copolymers of PFS and poly(acrylic acid) (PFS-b-PAAC copolymers) were prepared via hydrolysis of the corresponding PFS-b-PtBA copolymers. The chemical structure and composition of the PFS-b-PtBA and PFS-b-PAAC block copolymers were studied by nuclear magnetic resonance (NMR) spectroscopy, themogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The amphiphilic PFS-b-PAAC copolymers were cast into porous membranes by phase inversion in aqueous media. The surface and cross-sectional morphology of the PFS-b-PAAC membranes were studied by scanning electron microscopy (SEM). Membranes with well-defined pores of sizes in the micrometer range were obtained as a result of inverse micelle formation. The pH of the aqueous media for phase inversion and the PAAC content in the PFS-b-PAAC copolymers could be used to adjust the pore size of the membranes. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|