首页 | 本学科首页   官方微博 | 高级检索  
     


Multiconfigurational study on the synchronous mechanisms of the ClO self-reaction leading to Cl or Cl2
Authors:Qingyong?Meng  author-information"  >  author-information__contact u-icon-before"  >  mailto:meng.tsiyong@gmail.com"   title="  meng.tsiyong@gmail.com"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Hua?Dong,Ming-Bao?Huang
Affiliation:(1) College of Chemistry and Chemical Engineering, Graduate University of Chinese Academy of Sciences, P.O. Box 4588, Beijing, 100049, People’s Republic of China
Abstract:For studying the adiabatic and nonadiabatic mechanisms of the ClO (X 2Π) + ClO (X 2Π) → ClOOCl → 2Cl (2 P u) + O2 (X 3Σ g ) reaction (1) and the ClO (X 2Π) + ClO (X 2Π) → ClOOCl → Cl2 (X 1Σ g +) + O2 (X 3Σ g ) reaction (2), we calculated, by partial geometry optimizations under the C2 constraint, the O–O and O–Cl dissociation potential energy curves (PECs) from the five low-lying states of ClOOCl at the CASPT2 level. The CASSCF minimum-energy crossing point (MECP) between the potential energy surfaces of the 1 1A ground state [correlating with the product of reaction (1)] and the 1 3B state [correlating with the product of reaction (2)] states was also determined. Based on the CAS calculation results (PECs, energies, and spin–orbit coupling at the MECP), we predict that reaction (1) occurs along pathway 1: ClO (X 2Π) + ClO (X 2Π) → ClOOCl (1 1A) → 2Cl (2 P u) + O2 (X 3Σ g ) and that reaction (2) occurs along pathway 2: ClO (X 2Π) + ClO (X 2Π) → ClOOCl (1 1A) → 1 1A/1 3B MECP (142.4 cm−1) → ClOOCl (1 3B) → Cl2 (X 1Σ g +) + O2 (X 3Σ g ). The needed energies (relative to the reactant) for pathways 1 and 2 are predicted to be 5.3 and 11.1 kcal/mol, respectively, which indicates that reaction (1) is more favorable than reaction (2). The present work supports the traditional photochemical model for ozone degradation: ClOOCl (1 1A), formed by two ClO (X 2Π), can directly produce O2 plus two Cl atoms.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号