首页 | 本学科首页   官方微博 | 高级检索  
     


Thermodynamics of xenon adsorption on Pd(s)[8(100) × (110)]: From steps to multilayers
Authors:R. Miranda  S. Daiser  K. Wandelt  G. Ertl
Affiliation:Institut für Physikalische Chemie, Universität München, Sophienstrasse 11, D-8000 München 2,Fed. Rep. of Germany
Abstract:The thermodynamic properties of the adsorption of xenon on the stepped Pd(s)[8(100)×(110)] surface have been studied over a wide range of pressure (5×10?11 to 1×10?4 Torr) and temperature (40–140 K). We have measured adsorption isobars using AES in order to evaluate the surface coverage. By choosing pressure and temperature we have studied under equilibrium conditions, the successive adsorption of xenon on the steps and on the terraces until the first layer is formed, the condensation of the second layer as well as the formation of xenon multilayers. For a small range of pressure and temperature, adsorption takes place only on the atomic steps. The LEED pattern shows that only every other site along the steps is occupied. The extrapolated initial heat of adsorption for steps is EadS = 10.2 kcal/mol, decreasing monotonically by about 2 kcal/mol as the relative coverage of the step sites increases. The dipole moment of the Xe atoms adsorbed on steps is 1.12 D. During adsorption on the terraces the LEED observations suggest that the xenon adlayer is non-localized up to completion of the hexagonally close packed monolayer. The initial heat of adsorption on the terraces, EadT is 8.2 kcal/mol and decreases continuously to a value of 6.9 kcal/mol for a complete monolayer due to lateral repulsive interactions between the adsorbed xenon atoms. The induced dipole moment of Xe on terraces is reduced to 0.49 D. The 5p12 binding energy of Xe adsorbed on terrace sites is 0.3 eV smaller than that of Xe occuping step sites. The differential molar entropy of the adsorbed layer on the terraces as a function of coverage compares fairly well with the calculated value for an ideally mobile two-dimensional gas. No indication of the growth of two-dimensional xenon islands has been found under these conditions. The isosteric heat of adsorption for the second layer is Eadsec = 5.8 kcal/mol independently of the coverage. The condensation of the second layer is a first order two-dimensional gas ? two-dimensional solid phase transition in opposition to the continuous nature of the adsorption of the first layer (extending over a wide range of temperature for a given pressure). The induced dipole moment is further reduced for the Xe second layer to a value of 0.11 D. Finally, the condensation of multilayers proceeds with a latent heat of transformation of Econd = 3.8 kcal/mol in excellent agreement with the known bulk value for the heat of sublimation of xenon. The line shape of the NVV low energy Auger transitions of xenon or the UPS binding energies of the Xe 5p32,12 spectra allow a clear distinction between first, second and higher layer Xe atoms. We have also established the temperature/pressure conditions for equilibrium between first, second and bulk xenon layers, i.e. a so-called “roughening point”.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号