首页 | 本学科首页   官方微博 | 高级检索  
     

基于Monte Carlo模拟比较K近邻和局部线性分位数回归
引用本文:马学俊,何晓群. 基于Monte Carlo模拟比较K近邻和局部线性分位数回归[J]. 数学的实践与认识, 2014, 0(17)
作者姓名:马学俊  何晓群
作者单位:中国人民大学应用统计科学研究中心;西京学院应用统计科学研究中心;
基金项目:中国人民大学科学研究基金(中央高校基本科研业务费专项资金资助)项目成果(14XNH107)
摘    要:局部线性分位数回归是目前比较流行的非参数分位数回归,其潜在假定待估函数线性光滑.K近邻分位数回归也是非参数分位数回归的重要组成部分,其具有不需待估函数光滑和不同分位点的回归曲线不相交等优点.通过Monte Carlo模拟,比较了两者的估计,得到当待估函数的跳跃点或突变点比较多时,K近邻分位数回归的拟合效果优于局部线性回归.其中模拟的函数是Blocks、Bumps和HeaviSine的函数,它们分别代表跳跃性、波动性、斜率突变性的函数.

关 键 词:分位数回归  局部线性  K近邻  Monte Carlo

A Comparison of K Nearest Neighbor Quantile Regression and Local Linear Quantile Regression Based on Monte Carlo Simulation
Abstract:Local linear quantile regression is a popular method of nonparametric quantile regression,which assumes smoothness of functions.K nearest neighbor regression is also a key important part of nonparametric quantile regression,which has many advantages,such as not assuming smoothness of functions,noncrossing of regression curves of different quantile and so on.The paper carries out Monte Carlo simulations to compare the two models.When function to be estimated has some jump points or catastrophe points,K nearest-neighbor quantile regression is superior to local linear quantile regression.In addition,simulated function is Blocks,Bumps and HeaviSine,which stand for jumping,volatility,mutagenicity slope function.
Keywords:quantile regression  local polynomial  K nearest-neighbor  Monte Carlo
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号