首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Three‐dimensional flow in a thin annular layer of silicon melt with bidirectional temperature gradients
Authors:Fei Wang  Lan Peng  QuanZhuang Zhang
Abstract:Bidirectional temperature gradients coexist virtually in surface tension driven flows. However, the simulations have been performed to the flow with only one temperature gradient. A series of 3 D numerical simulations are conducted to investigate the Marangoni‐thermocapillary flow of silicon melt in a thin annular layer with bidirectional temperature gradients. The temperature gradients are produced by the temperature difference ΔT between walls and the constant heat flux q on the bottom, respectively. When changing q, the melt presents different state evolutions at different ΔT. Furthermore, two critical q are found, one makes the minimum melt temperature higher than the crystallization temperature and the other makes the flow unsteady. Both of the critical heat fluxes decrease with increasing ΔT. q contributes more to the elevation of the melt temperature, while ΔT contributes more to the enhancement of the melt instability. In addition, the melt on the free surface flows mainly along the radial direction.
Keywords:Marangoni‐thermocapillary flow  silicon melt  thin annular layer  bidirectional temperature gradients  numerical simulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号