首页 | 本学科首页   官方微博 | 高级检索  
     


Electron affinities of Al(n) clusters and multiple-fold aromaticity of the square Al4(2-) structure
Authors:Zhan Chang-Guo  Zheng Fang  Dixon David A
Affiliation:Department of Medicine, College of Physician & Surgeons, Columbia University, New York, New York 10032, USA. Chang-Guo.Zhan@pnl.gov
Abstract:The concept of aromaticity was first invented to account for the unusual stability of planar organic molecules with 4n + 2 delocalized pi electrons. Recent photoelectron spectroscopy experiments on all-metal MAl(4)(-) systems with an approximate square planar Al(4)(2-) unit and an alkali metal led to the suggestion that Al(4)(2-) is aromatic. The square Al(4)(2-) structure was recognized as the prototype of a new family of aromatic molecules. High-level ab initio calculations based on extrapolating CCSD(T)/aug-cc-pVxZ (x = D, T, and Q) to the complete basis set limit were used to calculate the first electron affinities of Al(n)(), n = 0-4. The calculated electron affinities, 0.41 eV (n = 0), 1.51 eV (n = 1), 1.89 eV (n = 3), and 2.18 eV (n = 4), are all in excellent agreement with available experimental data. On the basis of the high-level ab initio quantum chemical calculations, we can estimate the resonance energy and show that it is quite large, large enough to stabilize Al(4)(2-) with respect to Al(4). Analysis of the calculated results shows that the aromaticity of Al(4)(2-) is unusual and different from that of C(6)H(6). Particularly, compared to the usual (1-fold) pi aromaticity in C(6)H(6), which may be represented by two Kekulé structures sharing a common sigma bond framework, the square Al(4)(2-) structure has an unusual "multiple-fold" aromaticity determined by three independent delocalized (pi and sigma) bonding systems, each of which satisfies the 4n + 2 electron counting rule, leading to a total of 4 x 4 x 4 = 64 potential resonating Kekulé-like structures without a common sigma frame. We also discuss the 2-fold aromaticity (pi plus sigma) of the Al(3)(-) anion, which can be represented by 3 x 3 = 9 potential resonating Kekulé-like structures, each with two localized chemical bonds. These results lead us to suggest a general approach (applicable to both organic and inorganic molecules) for examining delocalized chemical bonding. The possible electronic contribution to the aromaticity of a molecule should not be limited to only one particular delocalized bonding system satisfying a certain electron counting rule of aromaticity. More than one independent delocalized bonding system can simultaneously satisfy the electron counting rule of aromaticity, and therefore, a molecular structure could have multiple-fold aromaticity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号