首页 | 本学科首页   官方微博 | 高级检索  
     

趋势项调制的小波-经验模态分解联合方法用于大气相干长度廓线去噪
摘    要:差分光柱像运动激光雷达的信号噪声直接影响大气湍流强度廓线的反演精度,采用一种有效的去噪方法能够提升雷达探测性能。为了减弱小波-经验模态分解(EMD)联合降噪方法对小波的依赖性,提出先利用信号的趋势项对小波降噪后的信号进行自适应调制,再利用调制后的信号进行EMD去噪,即小波-趋势项-EMD方法,趋势项的提取仍采用EMD方法。为了保证调制的有效性,提出适用于大气相干长度(r0)廓线的调制判定准则,并采用去趋势波动分析方法自适应识别EMD降噪的阈值。为了论证所提方法的有效性,将该方法与小波、EMD、集合经验模态分解(EEMD)、小波-EMD 4种去噪方法进行对比。数值仿真和实验结果表明,在不同噪声强度下,5种方法均可提高r0廓线的信噪比和反演精度。两种联合方法优于单独方法,小波法优于EMD和EEMD方法,小波-趋势项-EMD方法进一步提高了小波-EMD方法的去噪能力,为小波-EMD联合去噪方法的改进提供了新思路。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号