Synthesis of new two-photon absorbing fluorene derivatives via Cu-mediated Ullmann condensations |
| |
Authors: | Belfield Schafer Mourad Reinhardt |
| |
Affiliation: | Department of Chemistry, University of Central Florida, Orlando, 32816-2366, USA. |
| |
Abstract: | The Ullmann amination reaction was utilized to provide access to a number of fluorene analogues from common intermediates, via facile functionalization at positions 2, 7, and 9 of the fluorene ring. Through variation of amine or iodofluorene derivative, analogues bearing substitutents with varying electron-donating and electron-withdrawing ability, e.g., diphenylamino, bis-(4-methoxyphenyl)amine, nitro, and benzothiazole, were synthesized in good yield. The novel fluorene derivatives were fully characterized, including absorption and emission spectra. Didecylation at the 9-position afforded remarkably soluble derivatives. Target compounds 4, 5, and 9 are potentially useful as fluorophores in two-photon fluorescence microscopy. Their UV-vis spectra display desirable absorption in the range of interest suitable for two-photon excitation by near-IR femtosecond lasers. Preliminary measurements of two-photon absorption indicate the derivatives exhibit high two-photon absorptivity, affirming their potential as two-photon fluorophores. For example, using a 1,210 nm femtosecond pump beam, diphenylaminobenzothiazolylfluorene 4 exhibited nondegenerate two-photon absorption, with two-photon absorptivity (delta) of ca. 820 x 10(-50) cm(4) s photon(-1) molecule(-1) at the femtosecond white light continuum probe wavelength of 615 nm. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|