首页 | 本学科首页   官方微博 | 高级检索  
     


Water-dispersible, uniform nanospheres by heating-enabled micellization of amphiphilic block copolymers in polar solvents
Authors:Yang Zhiming  Wang Zhaogen  Yao Xueping  Wang Yong
Affiliation:State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing, 210009, China.
Abstract:Uniform nanospheres with tunable size down to 30 nm were prepared simply by heating amphiphilic block copolymers in polar solvents. Unlike reverse micelles prepared in nonpolar, oily solvents, these nanospheres have a hydrophilic surface, giving them good dispersibility in water. Furthermore, they are present as individual, separated, rigid particles upon casting from the solution other than continuous thin films of merged micelles cast from micellar solution in nonpolar solvents. These nanospheres were generated by a heating-enabled micellization process in which the affinity between the solvent and the polymer chains as well as the segmental mobility of both hydrophilic and hydrophobic blocks was enhanced, triggering the micellization of the glassy copolymers in polar solvents. This heating-enabled micellization produces purely well-defined nanospheres without interference of other morphologies. The micelle sizes and corona thickness are tunable mainly by changing the lengths of the hydrophobic and hydrophilic blocks, respectively. The heating-enabled micellization route for the preparation of polymeric nanospheres is extremely simple, and is particularly advantageous in producing rigid, micellar nanospheres from block copolymers with long glassy, hydrophobic blocks which are otherwise difficult to prepare with high efficiency and purity. Furthermore, encapsulation of hydrophobic molecules (e.g., dyes) into micelle cores could be integrated into the heating-enabled micellization, leading to a simple and effective process for dye-labeled nanoparticles and drug carriers.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号