KBi(2-x)Pbx (0 < x |
| |
Authors: | Ponou Siméon Müller Noémi Fässler Thomas F Häussermann Ulrich |
| |
Affiliation: | Department Chemie, Technische Universit?t München, Lichtenbergstrasse 4, D-85747 Garching, Germany. |
| |
Abstract: | The quasibinary system KBi(2-x)Pbx has been investigated, both experimentally and theoretically. Phases with compositions 0 < or = x < or = 1.2 were synthesized and structurally characterized by X-ray diffraction experiments. For low values of x (0 < or = x < 0.6), KBi(2-x)Pbx adopts the cubic Laves-phase structure MgCu2 (space group Fdm), which contains a rigid framework of corner-condensed symmetry-equivalent tetrahedra formed by randomly distributed Bi and Pb atoms. For compositions x > or = 0.6, these tetrahedra become alternately elongated and contracted. The distortion of the framework lowers the space-group symmetry to F43m (KBi(1.2)Pb(0.8), F43m, Z = 8, a = 9.572(1) A). Magnetometer measurements show that KBi2 (x = 0) is metallic and goes through a superconducting transition below 3.5 K. First principles calculations reveal that the Fd3m --> F43m distortion is largest for KBiPb (x = 1.0), which at the same time turns into a semiconductor. Thus, F43m KBiPb corresponds to a proper charge-balanced Zintl phase, K+[BiPb]-, with separated polyanionic tetrahedra, (Bi2Pb2)2-. However, it was not possible to prepare F43m KBiPb. Syntheses attempting to increase the Pb content in KBi(2-x)Pbx above x = 0.8 yielded additional, not yet characterized, ternary phases. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|