首页 | 本学科首页   官方微博 | 高级检索  
     


Thermodynamics of folding, stabilization, and binding in an engineered protein--protein complex
Authors:Dincbas-Renqvist Vildan  Lendel Christofer  Dogan Jakob  Wahlberg Elisabet  Härd Torleif
Affiliation:Department of Biotechnology, Royal Institute of Technology, S-10691 Stockholm, Sweden.
Abstract:We analyzed the thermodynamics of a complex protein-protein binding interaction using the (engineered) Z(SPA)(-)(1) affibody and it's Z domain binding partner as a model. Free Z(SPA)(-)(1) exists in an equilibrium between a molten-globule-like (MG) state and a completely unfolded state, wheras a well-ordered structure is observed in the Z:Z(SPA)(-)(1) complex. The thermodynamics of the MG state unfolding equilibrium can be separated from the thermodynamics of binding and stabilization by combined analysis of isothermal titration calorimetry data and a separate van't Hoff analysis of thermal unfolding. We find that (i) the unfolding equilibrium of free Z(SPA)(-)(1) has only a small influence on effective binding affinity, that (ii) the Z:Z(SPA)(-)(1) interface is inconspicuous and structure-based energetics calculations suggest that it should be capable of supporting strong binding, but that (iii) the conformational stabilization of the MG state to a well-ordered structure in the Z:Z(SPA)(-)(1) complex is associated with a large change in conformational entropy that opposes binding.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号