首页 | 本学科首页   官方微博 | 高级检索  
     


Utilizing relativistic effective core potentials for accurate calculations of molecular polarizabilities on transition metal compounds
Authors:Labello Nicholas P  Ferreira Antonio M  Kurtz Henry A
Affiliation:Computational Research on Materials Institute, Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, USA.
Abstract:The requirements necessary to extend an ECP basis set for the calculation of electric and linear optical properties to the transition metals are studied. Previously an augmentation of the SBK basis set for 39 elements with s and p electron only valences (H-Rn, excluding Ga, In, and Tl) [J. Comput. Chem., 2005, 26, 1464-1471] was presented. In this work, electric dipole moments, polarizabilities, and anisotropies of selected metal hydrides, sulfides, and bromides, cisplatin, and the Fe, Ru, and Os metallocene derivatives along with many other systems are calculated and discussed. ECP calculations of molecules containing 3d and 4d metal centers among main group atoms have good agreement, often within 1-2% of the all-electron result at the time-dependent Hartree-Fock (TDHF)/Sadlej level of theory. Molecules with a 5d metal center have a large difference from and are more accurate than the all-electron results due to the inclusion of relativistic effects in the ECPs. The polarizability as calculated with and without ECPs of metallic clusters and surfaces is increasingly different as atomic number increases, again due to a lack of relativistic effects in the all-electron calculations. The augmented ECP calculations are consistent with relativistic all-electron results, while the Sadlej calculations are consistent with other nonrelativistic results. Both relativistic and basis set effects are less noticeable when the metal is in a formally positive state.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号