首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Acoustic,entropy, and vorticity perturbations in a channel of variable cross section
Authors:E V Lebedinskii  M S Natanzon  N I Yarlykova
Abstract:A study is made of the problem of the propagation of infinitesimally small perturbations in a gas stream moving in a channel of variable cross section when the flow cannot be regarded as isentropic and irrotational. The solution is found in the framework of the linear theory of the flow of an ideal gas and the quasi-one-dimensional ldquohydraulicrdquo approximation for the steady regime. For irrotational and isentropic perturbations in a nozzle, this problem was considered in 1–4]. In 1], the problem is generalized to take into account entropy perturbations in the nozzle for the case of longitudinal oscillations. The present paper treats arbitrary modes in a nozzle and takes into account not only entropy but also vorticity perturbations in the moving stream. For each of the three perturbation types — acoustic, entropy, and vorticity — the solutions are expanded in series in cylindrical functions. It is shown that in the considered approximation each oscillation mode can be analyzed independently of the others. In the special case of flow in a Laval nozzle, the concept of impedance (admittance), which is widely used in acoustics, is generalized to take into account entropy and vorticity perturbations. The contribution to the flow dynamics of the acoustic, entropy, and vorticity perturbations is estimated numerically for longitudinal and transverse modes.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 91–98, January–February, 1982.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号