首页 | 本学科首页   官方微博 | 高级检索  
     


Isotopic Assessment of Sources and Processes Affecting Sulfate and Nitrate in Surface Water and Groundwater of Luxembourg
Authors:L. Rock  B. Mayer
Affiliation:1. Department of Geology &2. Geophysics , University of Calgary , 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada;3. Geophysics , University of Calgary , 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada;4. Department of Physics &5. Astronomy , University of Calgary , Calgary, Alberta, Canada
Abstract:Abstract

Surface water and deep and shallow groundwater samples were taken from selected parts of the Grand-Duchy of Luxembourg to determine the isotopic composition of nitrate and sulfate, in order to identify sources and/or processes affecting these solutes. Deep groundwater had sulfate concentrations between 20 and 40mg/L, δ34Ssulfate values between ?3.0 and ?20.0‰, and δ18Osulfate values between +1.5 and +5.0‰ nitrate was characterized by concentrations varying between <0.5 and 10mg/L, δ15Nnitrate values of ~?0.5‰, and δ18Onitrate values ~+3.0‰. In the shallow groundwater, sulfate concentrations ranged from 25 to 30mg/L, δ34Ssulfate values from ?20.0 to +4.5‰, and δ18Osulfate values from ~+0.5 to +4.5‰ nitrate concentrations varied between ~10 and 75mg/L, δ15Nnitrate values between +2.5 and +10.0‰, and δ18Onitrate values between +1.0 and +3.0‰. In surface water, sulfate concentrations ranged from 10 to 210mg/L, δ34Ssulfate values varied between ?9.3 and +10.9‰, and δ18Osulfate values between +3.0 and +10.7‰ were observed. Nitrate concentrations ranged from 10 to 40mg/L, δ15Nnitrate values from +6.5 to +12.0‰, and δ18Onitrate values from ?0.4 to +4.0‰. Based on these data, three sulfate sources were identified controlling the riverine sulfate load. These are soil sulfate, dissolution of evaporites, and oxidation of reduced S minerals in the bedrock. Both groundwater types were predominantly influenced by sulfate from the two latter lithogenic S sources. The deep groundwater and a couple shallow groundwater samples had nitrate derived mainly from soil nitrification. All other sampling sites were influenced by nitrate originating from sewage and/or manure. A decrease in nitrate concentration observed along one of the rivers was attributed to denitrification. It appears that sulfate within Luxembourg's aquatic ecosystem is mainly of lithogenic origin, whereas nitrate is often derived from anthropogenic activities.
Keywords:Groundwater  Natural variations  Nitrate  Nitrogen 15  Oxygen 18  Sulfate  Sulfur 34  Surface water
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号