首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of thickness and boundary conditions on the behavior of viscoelastic layers in sliding contact with wavy profiles
Institution:1. Department of Mechanics, Mathematics and Management, Politecnico di Bari, V. le Japigia, 182, 70126 Bari, Italy;2. CNR - Institute for Photonics and Nanotechnologies U.O.S. Bari, Physics Department “M. Merlin”, via Amendola 173, 70126 Bari, Italy;3. Imperial College London, Department of Mechanical Engineering, Exhibition Road, London SW7 2AZ, United Kingdom;1. Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA;2. General Motors Powertrain, Pontiac, MI 48340, USA
Abstract:In this work, the sliding contact of viscoelastic layers of finite thickness on rigid sinusoidal substrates is investigated within the framework of Green's functions approach. The periodic Green's functions are determined by means of a novel formalism, which can be applied, in general, to either 2D and 3D viscoelastic periodic contacts, regardless of the contact geometry and boundary conditions.Specifically, two different configurations are considered here: a free layer with a uniform pressure applied on the top, and a layer rigidly confined on the upper boundary. It is shown that the thickness affects the contact behavior differently, depending on the boundary conditions. In particular, the confined layer exhibits increasing contact stiffness when the thickness is reduced, leading to higher loads for complete contact to occur. The free layer, instead, becomes more and more compliant as thickness is reduced.We find that, in partial contact, the layer thickness and the boundary conditions significantly affect the frictional behavior. In fact, at low contact penetrations, the confined layer shows higher friction coefficients compared to the free layer case; whereas, the scenario is reversed at large contact penetrations. Furthermore, for confined layers, the sliding speed related to the friction coefficient peak is shifted as the contact penetration increases. However, once full contact is established, the friction coefficient shows a unique behavior regardless of the layer thickness and boundary conditions.
Keywords:Contact mechanics  Viscoelasticity  Friction  Fracture mechanics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号