首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Equivalent nonlinear beam model for the 3-D analysis of shear-type buildings: Application to aeroelastic instability
Institution:1. DICCA, Polytechnic School, University of Genoa, Via Montallegro 1, Genova 16145, Italy;2. M&MoCS, University of L’Aquila, Zona Ind.le di Bazzano, Loc. Monticchio, L’Aquila 67100, Italy;1. Department of Architectural Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 130-743, Republic of Korea;2. Department of Architectural Engineering, Konyang University, 121 Daehak-ro, Nonsan, Chungnam 320-711, Republic of Korea
Abstract:Tower buildings can be very sensitive to dynamic actions and their dynamic analysis is usually carried out numerically through sophisticated finite element models. In this paper, an equivalent nonlinear one-dimensional shear–shear–torsional beam model immersed in a three-dimensional space is introduced to reproduce, in an approximate way, the dynamic behavior of tower buildings. It represents an extension of a linear beam model recently introduced by the authors, accounting for nonlinearities generated by the stretching of the columns. The constitutive law of the beam is identified from a discrete model of a 3D-frame, via a homogenization process, which accounts for the rotation of the floors around the tower axis. The macroscopic shear strain in the equivalent beam is produced by the bending of columns, accompanied by negligible rotation of the floors. A coupled nonlinear shear–torsional mechanical model is thus obtained. The coupling between shear and torsion is related to a non-symmetric layout of the columns, while mechanical nonlinearities are proportional to the slenderness of the columns. The model can be used for the analysis of the response of tower buildings to any kind of dynamic and static excitation. A first application is here presented to investigate the effect of mechanical and aerodynamic coupling on the critical galloping conditions and on the postcritical behavior of tower buildings, based on a quasi-steady model of aerodynamic forces.
Keywords:Equivalent beam model  Homogenization procedure  Nonlinear beam model  Perturbation approach  Shear-type building  Aeroelastic instability
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号