首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Radiative Heat Transfer in a Resistance Heated Floating Zone Furnace: A Numerical Study with FIDAPTM
Authors:K Lin  P Dold
Abstract:This paper presents a numerical study of radiative heat transfer in a floating zone (FZ) furnace which was performed by using the commercial finite element program FIDAPTM. This resistance furnace should provide a temperature higher than the melting temperature of silicon (i.e. Tmax ≈ 1500 °C) and a variable temperature gradient at the liquid/solid interface (≥ 25 K/cm). Due to the high working temperatures, heat radiation plays the dominant role for the heat transfer in the furnace. For this reason, the quality of view factors used in the wall‐to‐wall model was carefully inspected with energy‐balance checks. A numerical model with two control parameters is applied to study the influence of material and geometrical parameters on the temperature field. In addition, this model allows us to estimate the internal thermal conditions which were used as thermal boundary conditions for partial 3D simulations. The influences of an optical lens system on the radial symmetry of the temperature field were examined with these partial 3D simulations. Furthermore, we used the inverse modeling method to achieve maximum possible temperature gradients at the liquid/solid interface according to the limitation of maximum available power and the maximum stable height of a melt zone.
Keywords:numerical simulation  float zone technique  finite element method  FIDAP  inverse modeling  radiation heat transfer
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号