首页 | 本学科首页   官方微博 | 高级检索  
     

带有变时滞延迟和分布延迟的竞争型神经网络周期解在时间尺度上的的全局指数稳定性
引用本文:刘洋,杨永清,梁甜,许先云. 带有变时滞延迟和分布延迟的竞争型神经网络周期解在时间尺度上的的全局指数稳定性[J]. 数学研究及应用, 2014, 34(4): 467-474
作者姓名:刘洋  杨永清  梁甜  许先云
作者单位:江南大学理学院, 江苏 无锡 214122;江南大学理学院, 江苏 无锡 214122;江南大学理学院, 江苏 无锡 214122;江南大学理学院, 江苏 无锡 214122
基金项目:中央高校基本科研业务费专项资金(Grant No.JUSRP51317B),国家自然科学基金(Grant No.60875036).
摘    要:In this paper, competitive neural networks with time-varying and distributed delays are investigated. By utilizing Lyapunov functional methods, the global exponential stability of periodic solutions of the neural networks is discussed on time scales. In addition, an example is given to illustrate the effectiveness of the theoretical results.

关 键 词:全局指数稳定性  竞争神经网络  分布时滞  时间尺度  周期解  Lyapunov泛函方法  时变
收稿时间:2013-05-17
修稿时间:2013-10-12

Global Exponential Stability of Periodic Solution for Competitive Neural Networks with Time-Varying and Distributed Delays on Time Scales
Yang LIU,Yongqing YANG,Tian LIANG and Xianyun XU. Global Exponential Stability of Periodic Solution for Competitive Neural Networks with Time-Varying and Distributed Delays on Time Scales[J]. Journal of Mathematical Research with Applications, 2014, 34(4): 467-474
Authors:Yang LIU  Yongqing YANG  Tian LIANG  Xianyun XU
Affiliation:Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Science, Jiangnan University, Jiangsu 214122, P. R. China;Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Science, Jiangnan University, Jiangsu 214122, P. R. China;Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Science, Jiangnan University, Jiangsu 214122, P. R. China;Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Science, Jiangnan University, Jiangsu 214122, P. R. China
Abstract:In this paper, competitive neural networks with time-varying and distributed delays are investigated. By utilizing Lyapunov functional methods, the global exponential stability of periodic solutions of the neural networks is discussed on time scales. In addition, an example is given to illustrate the effectiveness of the theoretical results.
Keywords:stability   competitive neural networks   delays   time scales.
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《数学研究及应用》浏览原始摘要信息
点击此处可从《数学研究及应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号