首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spectroscopic properties of novel aromatic metal clusters: NaM4 (M=Al,Ga,In) and their cations and anions
Authors:Zhao Cunyuan  Balasubramanian K
Institution:Center for Image Processing and Integrated Computing, University of California Davis, Livermore, California 94550, USA.
Abstract:The ground- and several excited states of metal aromatic clusters, namely NaM(4) and NaM(4) (+/-) (M=Al,Ga,In) clusters have been investigated by employing complete active-space self-consistent-field followed by multireference singles and doubles configuration interaction computations that included up to 10 million configurations and other methods. The ground states NaM(4) (-) of aromatic anions are found to be symmetric C(4nu) ((1)A(1)) electronic states with ideal square pyramid geometries. While the ground state of NaIn(4) is also predicted to be a symmetric C(4nu) ((2)A(1)) square pyramid, the ground state of the NaAl(4) cluster is found to have a C(2nu) ((2)A(1)) pyramid with a rhombus base, and the ground state of NaGa(4) possesses a C(2nu) ((2)A(1)) pyramid with a rectangle base. In general, these structures exhibit two competing geometries, viz., an ideal C(4nu) structure and a distorted rhomboidal or rectangular pyramid structure (C(2nu)). All of the ground states of the NaM(4) (+) (M=Al,Ga,In) cations are computed to be C(2nu) ((3)A(2)) pyramids with rhombus bases. The equilibrium geometries, vibrational frequencies, dissociation energies, adiabatic ionization potentials, adiabatic electron affinities for the electronic states of NaM(4) (M=Al,Ga,In), and their ions are computed and compared with experimental results and other theoretical calculations. On the basis of our computed excited states energy separations, we have tentatively suggested assignments to the observed X and A states in the anion photoelectron spectra of Al(4)Na(-) reported by Li et al. X. Li, A. E. Kuznetov, H. F. Zheng, A. I. Boldyrev, and L. S. Wang, Science 291, 859 (2001)]. The X state can be assigned to a C(2nu) ((2)A(1)) rhomboidal pyramid. The A state observed in the anion spectrum is assigned to the first excited state ((2)B(1)) of the neutral NaAl(4) with the C(4nu) symmetry. The assignments of the excited states are consistent with the experimental excitation energies and the previous Green's function-based methods for the vertical transition energy separations between the X and A bands.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号