首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enhancement of the Curie temperature by isomerization of diarylethene (DAE) for an organic-inorganic hybrid system: Co4(OH)7(DAE)0.5.3H2O
Authors:Shimizu H  Okubo M  Nakamoto A  Enomoto M  Kojima N
Institution:Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan.
Abstract:Intercalation of an organic photochromic molecule into layered magnetic systems may provide multifunctional properties such as photomagnetism. To build up a photosensitive multifunctional magnet, an organic-inorganic hybrid system coupled with a photochromic diarylethene anion, 2,2'-dimethyl-3,3'-(perfluorocyclopentene-1,2-diyl)bis(benzob]thiophene-6-sulfonate) (DAE), and cobalt LDHs (layered double hydroxides), Co4(OH)7(DAE)0.5.3H2O, was synthesized by the anion exchange reaction between Co2(OH)3(CH3COO).H2O and DAE. In the dark and under UV-irradiated (313 nm) conditions, Co4(OH)7(DAE)0.5.3H2O with open and closed forms of DAE were obtained, respectively. The magnetic susceptibility measurements elucidated ferromagnetic intra- and interlayer interactions and Curie temperatures of TC = 9 and 20 K for cobalt LDHs with the open and closed forms of DAE, respectively. The enhancement of the Curie temperature from 9 to 20 K by substitution of the open form of DAE with the closed form of DAE as an intercalated molecule is attributed to the delocalization of the pi-electrons in the closed form of DAE, which enhances the interlayer magnetic interaction. The enhancement of the interlayer magnetic interaction induced by the delocalization of pi-electrons in intercalated molecules is strongly supported by the fact that the Curie temperature (26.0 K) of cobalt LDHs with (E,E)-2,4-hexadienedioate having a conjugated pi-electron system is enormously higher than that (7.0 K) of the cobalt LDHs with hexanedioate. By UV irradiation at 313 nm, Co4(OH)7(DAE)0.5.3H2O shows the photoisomerization of DAE from the open form to the closed one in the solid state, which leads to the enhancement of Curie temperature.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号