首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Strain and electric-field induced tunable electronic properties of blue phosphorus-GeS/SnS/SnSe (orthorhombic) vdW heterostructures
Institution:Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, PR China
Abstract:In this work, we composite blue phosphorous (blueP) and monolayer GeS/SnS/SnSe through van der Waals (vdW) force interaction. It is found that blueP-GeS/SnS heterostructures are stable and form type-II band alignments, which can effectively promote the separation of photoinduced carriers. We perform a systematic theoretical study of interlayer coupling effects and band realignment of blueP-GeS/SnS/SnSe heterostructures after the strain and electric-field are imposed. BlueP and GeS/SnS/SnSe are twisted with different angles, and the theoretical framework of bands alignment and carriers' separation are established. The results show that the electronic properties of independent blueP and GeS/SnS/SnSe can be roughly maintained. When strain is applied, the band alignment shows significant adjustability by changing the external strain. Besides, the blueP-SnSe heterostructure show type-II characteristic in the range from -0.25 V/Å to -0.1 V/Å. Our theoretical calculation proves that strain and electric field engineering are two useful methods to design novel electronic devices.
Keywords:Heterostructure  Blue phosphorus  First-principles
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号