Abstract: | In this paper, a constructive theory is developed for approximating functions of one or more variables by superposition of sigmoidal functions. This is done in the uniform norm as well as in the $L^p$ norm. Results for the simultaneous approximation, with the same order of accuracy, of a function and its derivatives (whenever these exist), are obtained. The relation with neural networks and radial basis functions approximations is discussed. Numerical examples are given for the purpose of illustration. |