首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electrical Detection and Magnetic Imaging of Stabilized Magnetic Skyrmions in Fe1−xCoxGe (x < 0.1) Microplates
Authors:Matthew J Stolt  Sebastian Schneider  Nitish Mathur  Melinda J Shearer  Bernd Rellinghaus  Kornelius Nielsch  Song Jin
Abstract:Magnetic skyrmions are topologically protected spin textures that are being investigated for their potential use in next generation magnetic storage devices. Here, magnetic skyrmions and other magnetic phases in Fe1?xCoxGe (x < 0.1) microplates (MPLs) newly synthesized via chemical vapor deposition are studied using both magnetic imaging and transport measurements. Lorentz transmission electron microscopy reveals a stabilized magnetic skyrmion phase near room temperature (≈280 K) and a quenched metastable skyrmion lattice via field cooling. Magnetoresistance (MR) measurements in three different configurations reveal a unique anomalous MR signal at temperatures below 200 K and two distinct field dependent magnetic transitions. The topological Hall effect (THE), known as the electronic signature of magnetic skyrmion phase, is detected for the first time in a Fe1?xCoxGe nanostructure, with a large and positive peak THE resistivity of ≈32 nΩ cm at 260 K. This large magnitude is attributed to both nanostructuring and decreased carrier concentrations due to Co alloying of the Fe1?xCoxGe MPL. A consistent magnetic phase diagram summarized from both the magnetic imaging and transport measurements shows that the magnetic skyrmions are stabilized in Fe1?xCoxGe MPLs compared to bulk materials. This study lays the foundation for future skyrmion‐based nanodevices in information storage technologies.
Keywords:anisotropic magnetoresistance  iron germanide  Lorentz transmission electron microscopy  magnetic skyrmion  topological Hall effect
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号