首页 | 本学科首页   官方微博 | 高级检索  
     


Structurally Ordered Low‐Pt Intermetallic Electrocatalysts toward Durably High Oxygen Reduction Reaction Activity
Authors:Zhongxiang Wang  Xiaozhang Yao  Yongqiang Kang  Linqing Miao  Dongsheng Xia  Lin Gan
Abstract:Carbon‐supported low‐Pt ordered intermetallic nanoparticulate catalysts (PtM3, M = Fe, Co, and Ni) are explored in order to enhance the oxygen reduction reaction (ORR) activity while achieving a high stability compared to previously reported Pt‐richer ordered intermetallics (Pt3M and PtM) and low‐Pt disordered alloy catalysts. Upon high‐temperature thermal annealing, ordered PtCo3 intermetallic nanoparticles are successfully prepared with minimum particle sintering. In contrast, the PtFe3 catalyst, despite the formation of ordered structure, suffers from obvious particle sintering and detrimental metal–support interaction, while the PtNi3 catalyst shows no structural ordering transition at all but significant particle sintering. The ordered PtCo3 catalyst exhibits durably thin Pt shells with a uniform thickness below 0.6 nm (corresponding to 2–3 Pt atomic layers) and a high Co content inside the nanoparticles after 10 000 potential cycling, leading to a durably compressive Pt surface and thereby both high activity (fivefold vs a commercial Pt catalyst and 1.7‐fold vs an ordered PtCo intermetallic catalyst) and high durability (5 mV loss in half‐wave potential and 9% drop in mass activity). These results provide a new strategy toward highly active and durable ORR electrocatalysts by rational development of low‐Pt ordered intermetallics.
Keywords:low‐Pt electrocatalysts  oxygen reduction reaction  stability  structural ordering
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号