首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dye-sensitized solar cells employing amphiphilic poly(ethylene glycol) electrolytes
Authors:Rajkumar Patel  Jin Ah Seo  Joo Hwan Koh  Jong Hak Kim  Yong Soo Kang
Institution:1. Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749, South Korea;2. WCU Department of Energy Engineering, Hanyang University, Seoul 133-791, South Korea
Abstract:Poly(ethylene glycol) (PEG) was modified with a long alkyl acid to produce a self-organized amphiphilic polymer (amPEG). FT-IR and NMR spectroscopies confirmed the amPEG synthesis. This polymer was complexed with lithium iodide (LiI) and 1-methyl-3-propylimidazolium iodide (MPII) to prepare polymer electrolytes to be applied to dye-sensitized solar cells (DSSC). FT-IR studies showed that upon the addition of litium salt the free ether and ester carbonyl bands shifted towards lower wavenumbers, indicating the complexation of Li ions with oxygens on the amPEG. Alkylation and salt introduction reduced PEG crystallinity, as characterized by wide angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC). The ionic conductivities of the polymer electrolytes increased with increasing salt concentrations, and the energy conversion efficiency of DSSC reached 2.6% at 100 mW cm?2 for amPEG/MPII system which is higher than amPEG/LiI. This may be due to the higher mobility of MPII ion than the lithium ion in the polymer electrolyte. The interfacial properties between electrolytes and electrodes were investigated using field-emission scanning electron microscopy (FE-SEM) and electrochemical impedance spectroscopy (EIS).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号