首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Assessment of the surface areas of silica and clay in acid-leached clay materials using concepts of adsorption on heterogeneous surfaces
Authors:Nguetnkam J P  Kamga R  Villiéras F  Ekodeck G E  Razafitianamaharavo A  Yvon J
Institution:Département des Sciences de la Terre, Faculté des Sciences, Université de Ngaoundéré, Cameroon. frederic.villieras@ensg.inpl-nancy.fr
Abstract:Two clays of the areas of Kaélé and Kousseri (extreme North Cameroon) containing mainly smectites and minor amounts of kaolinite were activated with sulfuric acid (1 to 8 N). Crystal-chemical properties were studied using X-ray diffraction, Fourier transform infrared spectroscopy, and chemical analysis, while textural properties were analyzed by step-by-step nitrogen adsorption at 77 K and low-pressure quasi-equilibrium argon adsorption at 77 K. As is generally observed, smectite is more sensitive to acid leaching than kaolinite. As a result of smectite decomposition, amorphous Al-containing silica forms, leading to an increase in the specific surface area of the leached materials. The content of the clay minerals and amorphous silica can be estimated on the basis of changes in the chemical composition of the samples upon acid leaching. As far as adsorption energy distributions derived from low-pressure argon derivative adsorption isotherms are concerned, the main modifications occur when 1 N sulfuric acid is used, due to the replacement of calcium and sodium compensating cations by protons. When higher acid concentrations are used, variations in adsorption energy distribution can be assigned to the presence of amorphous silica. It was possible to model experimental adsorption energy distributions as weighted sums of argon adsorption energy distributions obtained on (i) 1 N samples representing protonated clays and (ii) a silica gel used as a reference aluminous silica. Using such an approach, increasing acid concentration results in an increase in the surface area of silica, whereas the surface area of the remaining clay minerals remains roughly constant.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号