首页 | 本学科首页   官方微博 | 高级检索  
     


Narrow-band sound localization related to external ear acoustics.
Authors:J C Middlebrooks
Affiliation:Department of Neuroscience, University of Florida, Gainesville 32610-0244.
Abstract:Human subjects localized brief 1/6-oct bandpassed noise bursts that were centered at 6, 8, 10, and 12 kHz. All testing was done under binaural conditions. The horizontal component of subjects' responses was accurate, comparable to that for broadband localization, but the vertical and front/back components exhibited systematic errors. Specifically, responses tended to cluster within restricted ranges that were specific for each center frequency. The directional transfer functions of the subjects' external ears were measured for 360 horizontal and vertical locations. The spectra of the sounds that were present in the subjects' ear canals, the "proximal stimulus" spectra, were computed by combining the spectra of the narrow-band sound sources with the directional transfer functions for particular stimulus locations. Subjects consistently localized sounds to regions within which the associated directional transfer function correlated most closely with the proximal stimulus spectrum. A quantitative model was constructed that successfully predicted subjects' responses based on interaural level difference and spectral cues. A test of the model, using techniques adapted from signal detection theory, indicated that subjects tend to use interaural level difference and spectral shape cues independently, limited only by a slight spatial correlation of the two cues. A testing procedure is described that provides a quantitative comparison of various predictive models of sound localization.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号