首页 | 本学科首页   官方微博 | 高级检索  
     


Phosphorus: first principle simulation of a liquid-liquid phase transition
Authors:Ghiringhelli Luca M  Meijer Evert Jan
Affiliation:van 't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands. lghiring@science.uva.nl
Abstract:We report a Car-Parrinello molecular dynamics study of the liquid-liquid phase transition in phosphorus. We employed a gradient corrected density functional (B-LYP) to describe the electronic structure and performed simulations at constant pressure. Upon increasing pressure we observed, along the 1500 K isotherm, a structural transition converting the molecular P4 liquid into an atomic liquid with a network structure. Our calculations suggest this transition to be first order with a discontinuous density increase accompanied by an insulator into metal transition. The transition pressure is significantly higher than obtained by employing the less accurate local density functional (LDA) [Morishita, Phys. Rev. Lett. 87, 105701 (2001)], which matches the experimental value for the pressure. We argue why the LDA result should be considered fortuitous. The change of the calculated structure factor upon the transition shows the same trend as experimentally observed. Analysis of the structural changes during the phase transition revealed that a chain of linked and opened up ("butterfly") P4 molecules may serve as a seed triggering the transition from the molecular to the network phase.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号