首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ab initio investigation of the autoionization process Ar*(4s3P2, 3P0)+Hg --> (Ar-Hg)+ + e-: potential energy curves and autoionization widths, ionization cross sections, and electron energy spectra
Authors:Thiel Linda  Hotop Hartmut  Meyer Wilfried
Institution:Department of Chemistry, University of Kaiserslautern, D-67663 Kaiserslautern, Federal Republic of Germany.
Abstract:Multireference configuration interaction (MRCI) calculations have been performed for the Ar*(4s3P2,0) + Hg collision complex. Feshbach projection based on orbital occupancy defines the entrance channel resonance states and provides their potential energy curves as well as resonance-continuum coupling matrix elements, which are turned into an autoionization width function by Stieltjes imaging. Coupled cluster calculations with singles, doubles, and pertubative triples CCSD(T)] give the exit channel potential of ArHg+. The Hg20+ core is treated by a scalar-relativistic effective core potential, reparametrized to reproduce experimental excitation and ionization energies. Spin-orbit interaction is included for the Ar* open 3p shell. The nuclear motion is treated within the local complex potential approximation. Ionization occurs for 85% (3P0) and 98% (3P2) of the symmetry allowed close collisions. Calculated ionization cross sections show good agreement with experimental data. The difference potential of the collision complex is remarkably flat down to internuclear separations of 8a0 and leads to very sharp peaks in theoretical electron energy spectra for single collision energies. After accounting for the experimental energy distribution and the resolution function of the spectrometer, a very satisfying agreement with experimental electron energy spectra is found, including subtle differences due to spin-orbit coupling. Theoretical input appears indispensable for an analysis of the measured data in terms of potential energy curves and autoionization width functions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号