首页 | 本学科首页   官方微博 | 高级检索  
     检索      


NMR paramagnetic relaxation due to the S=5/2 complex, Fe(III)-(tetra-p-sulfonatophenyl)porphyrin: central role of the tetragonal fourth-order zero-field splitting interaction
Authors:Schaefle Nathaniel  Sharp Robert
Institution:Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, USA.
Abstract:The metalloporphyrins, Me-TSPP Me=Cr(III), Mn(III), Mn(II), Fe(III), and TSPP=meso-(tetra-p-sulfonatophenyl)porphyrin], which possess electron spins S=3/2, 2, 5/2, and 5/2, respectively, comprise an important series of model systems for mechanistic studies of NMR paramagnetic relaxation enhancement (NMR-PRE). For these S>1/2 spin systems, the NMR-PRE depends critically on the detailed form of the zero-field splitting (zfs) tensor. We report the results of experimental and theoretical studies of the NMR relaxation mechanism associated with Fe(III)-TSPP, a spin 5/2 complex for which the overall zfs is relatively large (D approximately = 10 cm(-1)). A comparison of experimental data with spin dynamics simulations shows that the primary determinant of the shape of the magnetic relaxation dispersion profile of the water proton R1 is the tetragonal fourth-order component of the zfs tensor. The relaxation mechanism, which has not previously been described, is a consequence of zfs-induced mixing of the spin eigenfunctions of adjacent Kramers doublets. We have also investigated the magnetic-field dependence of electron-spin relaxation for S=5/2 in the presence of a large zfs, such as occurs in Fe(III)-TSPP. Calculations show that field dependence of this kind is suppressed in the vicinity of the zfs limit, in agreement with observation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号