首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamic thermoelastic effects for half-planes and half-spaces with nearly-planar surfaces
Authors:L M Brock  M Rodgers  H G Georgiadis
Institution:(1) Engineering Mechanics, University of Kentucky, 40506 Lexington, Kentucky, U.S.A.;(2) Mechanics Division, National Technical University of Athens, 15773 Zographou, Greece
Abstract:The effects of non-planarity on the dynamic surface temperature changes induced for plane-strain and 3D problems on the nearly-planar surfaces of, respectively, coupled thermoelastic half-planes and half-spaces by surface heat fluxes are treated. The nearly-planar nature of the surfaces allows the problem solutions to be written, following a standard perturbation scheme, as series expansions in a dimensionless surface contour amplitude parameter. The first, or zero-order, terms represent the ideal (planar) surface solutions, while the second, or first-order, terms represent corrections for non-planarity.Because the characteristic thermoelastic time is of O(10–7)mgrs, large-time asymptotic forms of the exact integral transform solutions can be used. These can be inverted exactly and used in Green's function operations to yield analytic, or integrals of analytic, expressions. Two types of thermal loading for the half-plane and yet a third type of thermal loading for the half-space are considered. Comparison of the zero- and first-order surface temperature changes for each case indicate that non-planarity gives rise for large times to changes in surface regions beyond those predicted by an ideal surface analysis. Moreover, the magnitudes of these changes can be more significant than the ideal surface results.
Keywords:thermoelasticity  surface  nearly-planar  dynamic  temperature
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号