首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structural control of floating wind turbines
Authors:Matthew A Lackner  Mario A Rotea
Institution:a Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, 160 Governors Dr., Amherst, MA 01003, United States
b Department of Mechanical Engineering, The University of Texas at Dallas, 800 W. Campbell Rd., EC-38, Richardson, TX 75080, United States
Abstract:The application of control techniques to offshore wind turbines has the potential to significantly improve the structural response, and thus reliability, of these systems. Passive and active control is investigated for a floating barge-type wind turbine. Optimal passive parameters are determined using a parametric investigation for a tuned mass damper system. A limited degree of freedom model is identified with synthetic data and used to design a family of controllers using H multivariable loop shaping. The controllers in this family are then implemented in full degree of freedom time domain simulations. The performance of the passive and active control is quantified using the reduction in fatigue loads of the tower base bending moment. The performance is calculated as a function of active power consumption and the stroke of the actuator. The results are compared to the baseline and optimal passive system, and the additional achievable load reduction using active control is quantified. It is shown that the optimized passive system results in tower fore-aft fatigue load reductions of approximately 10% compared to a baseline turbine. For the active control, load reductions of 30% or more are achievable, at the expense of active power and large strokes. Active control is shown to be an effective means of reducing structural loads, and the costs in power and stroke to achieve these reductions are demonstrated.
Keywords:Structural control  Active control  Passive control  Floating wind turbine
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号