首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dielectrophoretic manipulation of suspended submicron particles
Authors:Schnelle T  Müller T  Gradl G  Shirley S G  Fuhr G
Institution:EVOTEC BioSysteme AG, Hamburg, Germany. th.schnelle@gmx.de
Abstract:Planar and three-dimensiònal multi-electrode systems with dimensions of 2 - 40 microm were fabricated by IC technology and used for trapping and aggregation of microparticles. To achieve negative dielectrophoresis (repelling forces) in aqueous solution, radiofrequency (RF) electric fields were used. Experimentally, particles down to 100 nm in diameter were enriched and trapped as aggregates in field cages and dielectrophoretic microfilters and observed using confocal fluorimetry. Theoretically, single particles with an effective diameter down to about 35 nm should be trappable in micron field cages. Due to the unavoidable Ohmic heating, RF electric fields can induce liquid streaming in extremely small channels (12 microm in height). This can be used for pumping and particle enrichment but it enhances Brownian motion and counteracts dielectrophoretic trapping. Combining Brownian motion with ratchet-like dielectrophoretic forces enables the creation of Brownian pumps that could be used as sensitive separation devices for submicron particles if liquid pumping is avoided in smaller structures.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号